WAVIMG - Control Files > Dr. Probe / Documentation / WAVIMG |
Microscope, imaging, and calculation control parameters of the program
WAVIMG have to be provided by a parameter file.
Parameter files are text files containing a list of values and strings
in a fix sequence. The table below describes the structure of the
parameter file and provides short descriptions. A parameter file must
be provided when calling the wavimg.exe
application.
Line |
Parameters |
Description (Version 0.55+) |
01 |
<string> |
File name of the input wave function |
02 |
<number>, <number> |
Number of columns and rows (samples) of the input wave function [pixels] |
03 |
<float>, <float> |
Physical row and column sampling rate of the input wave function [nm/pixel] |
04 |
<float> |
Primary electron energy [keV] |
05 |
<number> |
Switch option for the type of output:
Example: |
06 |
<string> |
File name of the output image or wave function data |
07 |
<number>, <number> |
Number of columns and rows (samples) of the output image [pixels] |
08 |
<number>, <float>, <float>, <float> |
Image output data type, image vacuum mean intensity [counts],
conversion rate [counts/e-], readout noise rms amplitude [counts] |
09 |
<number> |
Switch SF for extracting a specific image frame |
10 |
<float> |
Image sampling rate [nm/pixel] |
11 |
<float>, <float> |
Image frame offset in pixels of the input wave functions |
12 |
<float> |
Image frame rotation with respect to the input wave horizontal axis [deg] |
13 |
<number> |
Switch option for selecting the model for the simulation of partial coherence in the image formation. Numbers from 1 to 6, see table of supported coherence models below.
Example: |
14 |
<number>, <float> |
Partial temporal coherence switch and focus-spread (1/e-half width) [nm] |
15 |
<number>, <float> |
Partial spatial coherence switch and semi-convergence angle (1/e-half width) [mrad] |
16 |
<number>, <float>, <string> |
Switch, k-space scaling, and file name for the simulation of
a frequency modulated detector transfer function (MTF) |
17 |
<number>, <float>, <float>, <float> |
Switch and rms amplitudes [nm, nm, deg] of the effective image spread. |
18 |
<number> |
Number Nabr of image aberrations set below |
18+ |
<number>, <float>, <float> |
Aberration definition by an index number and two coefficient values
given in [nm] (details) |
19+ Nabr |
<float> |
Objective aperture radius [mrad] |
20+ Nabr |
<float>, <float> |
Center of the objective aperture with respect to the zero beam [mrad, mrad] |
21+ Nabr |
<number> |
Number of parameter loops Nlp defined below. |
22+ Nabr |
<number> |
Loop parameter class Lc.
Example: |
23+ Nabr |
<number> |
Loop parameter index Lp |
24+ Nabr |
<number> |
Loop variation form Lf
Example: |
25+ Nabr |
<float>, <float>, <number> |
Loop range (Lr0, Lr1, Lrn)
Example: |
26+ Nabr |
<string> |
Loop string identifier Ls
This string is used very flexible depen
Example: |
List of coherence models for image simulations
Switch |
Coherence model |
1 |
Non-linear image calculation including partial temporal coherence (focus spread) by explicit averaging. Partial spatial coherence is treated by a quasi-coherent approach with a dampening envelope applied to the wave function. This model is good for HRTEM with Cs-corrected microscopes, where the partial spatial coherence can be largely ignored but the partial temporal coherence limits the resolution as a compromise for faster calculation. |
2 |
Non-linear image calculation by explicit averaging of coherent sub-images with focal variation and angular variation. With sufficient numbe rof focal and angular samples, this is a fully accurate calculation of partial coherence including all cross-terms and non-linearities. It is valid for all kinds of TEMs but quite time consuming. |
3 |
Linear image calculation considering partial coherence by linear envelopes applied to the linear interference terms. This approximation remains valid for weak-phase objects. Non-linear image components are ignored. |
4 |
Fourier-space synthesis with partially coherent transmission cross-coefficient (TCC). This is a fully non-linear imaging model with dampening including a first-order derivative solution of the TCC. It can be applied to moderate coherence cases. The calculation is very time consuming and only implemented for reference. Mode 2 should be preferred over mode 4. |
5 |
Non-linear image calculation including frozen-lattice variations with explicit averaging of focal and angular distributions for partial coherence. The averaging is over random samples of the distribution functions. |
6 |
Non-linear image calculation in a quasi-coherent approximation of partial coherence. A dampened wave function in the image plane is calculated by multiplying linear dampening envelopes in Fourier space and then calculating the absolute square in real space. This approximation applies a too strong dampening to some of the non-linear interference terms. It is of limited use and valid only for very thin samples or microscopes where the resolution is not limited by partial coherence effects. |
Last update: Feb 14, 2019 contact disclaimer(de)